
Linux BRIDGE−STP−HOWTO

Table of Contents

Linux BRIDGE−STP−HOWTO..1
Uwe Böhme...1
Lennert Buytenhenk...1

1. License..3

2. What Is A Bridge?..4

3. Rules On Bridging...5

4. Preparing The Bridge...6
4.1. Get The Files...6
4.2. Apply The Patches..7
4.3. Configure The Kernel...7
4.4. Compile The Kernel..7
4.5. Compile The Bridge Utilities..8

5. Set Up The Bridge...9
5.1. brctl Command Synopsis..9
5.2. Basic Setup...11

6. Advanced Bridge Features...13
6.1. Spanning Tree Protocol...13

STP Thread from bridge@openrock.net...13
6.2. Bridge And The IP−Chains...14

7. A Practical Setup Example..16
7.1. Hardware−setup..16
7.2. Software−setup...17
7.3. See It Work...20
7.4. Bridge Tests..23

7.4.1. Tear The Patch Wire Test...23
7.4.2. Kill The Root Bridge Test..25

Appendix A. Network Interface Cards...28

Appendix B. Recommended Reading..30

Appendix C. FAQ..31
FAQ...31

1. Hardware...31
2. Software..31

Linux BRIDGE−STP−HOWTO

i

Linux BRIDGE−STP−HOWTO

Uwe Böhme

 Johann−Heinrich−Abt−Straße 7
 95213
 Münchberg
 Germany
 +49/9251 960877
 +49/9251 960878
 uwe@bnhof.de

Lennert Buytenhenk

bridge code maintainer and developer
gnu.org

 buytenh@gnu.org

Still draft

Copyright © 2000 by Uwe Böhme

Revision History

Revision v0.00 01 June 2000 Revised by: U.B.

Initial Release.

Revision v1.01 07 June 2000 Revised by: U.B.

Applied patch from Lennert. Corrected some syntactical errors. Completed some brctl commands. Added test
output and description.

Revision v1.02 08 June 2000 Revised by: U.B.

More typo and grammar corrections.

Revision v1.03 09 June 2000 Revised by: U.B.

The usual typo. Applied Lennert's explanations about the message logs of the pull−the−plug−test.

Revision v1.04 11 June 2000 Revised by: U.B.

The usual typo. Applied ultimate test dumps.

Revision v1.05 17 June 2000 Revised by: U.B.

System freeze remark. Modified style sheet.

Revision v0.01 25 June 2000 Revised by: U.B.

Changes name from BRIDGE−HOWTO to BRIDGE−STP−HOWTO (avoid interference with
BRIDGE−HOWTO by Christopher Cole) and restart Version numbering (we where already too far). Lennert
Buytenhenk announced as coauthor.

Revision v0.02 16 July 2000 Revised by: U.B.

Fixed broken graphics in html dsl. Prepared pdf. Typos.

Linux BRIDGE−STP−HOWTO 1

Table of Contents
1. License
2. What Is A Bridge?
3. Rules On Bridging
4. Preparing The Bridge

4.1. Get The Files
4.2. Apply The Patches
4.3. Configure The Kernel
4.4. Compile The Kernel
4.5. Compile The Bridge Utilities

5. Set Up The Bridge
5.1. brctl Command Synopsis
5.2. Basic Setup

6. Advanced Bridge Features
6.1. Spanning Tree Protocol
6.2. Bridge And The IP−Chains

7. A Practical Setup Example
7.1. Hardware−setup
7.2. Software−setup
7.3. See It Work
7.4. Bridge Tests

Appendix A. Network Interface Cards
Appendix B. Recommended Reading
Appendix C. FAQ
About The Linux Modular Bridge And STP

This document describes how to setup a bridge with the recent kernel patches and brctl utility by Lennert
Buytenhek. With developer kernel 2.3.47 the new bridging code is part of the mainstream. On 20.06.2000
there are patches for stable kernels 2.2.14 and 2.2.15. What happend if a penguin crosses a bridge?

Linux BRIDGE−STP−HOWTO

Linux BRIDGE−STP−HOWTO 2

1. License
Copyright (c) 2000 by Uwe Böhme. This document may be distributed only subject to the terms and
conditions set forth in the LDP License available at http://sunsite.unc.edu/LDP/LICENSE.html

1. License 3

COPYRIGHT.html
http://sunsite.unc.edu/LDP/LICENSE.html

2. What Is A Bridge?
A bridge is a device that separates two or more network segments within one logical network (e.g. a single
IP−subnet).

A bridge is usually placed between two separate groups of computers that talk with each other, but not that
much with the computers in the other group. A good example of this is to consider a cluster of Macintoshes
and a cluster of Unix machines. Both of these groups of machines tend to be quite chatty amongst
themselves, and the traffic they produce on the network causes collisions for the other machines who are
trying to speak to one another.

The job of the bridge is to examine the destination of the data packets one at a time and decide whether or not
to pass the packets to the other side of the Ethernet segment. The result is a faster, quieter network with less
collisions.

The bridging code decides whether to bridge data or to drop it not by looking at the protocol type (IP, IPX,
NetBEUI), but by looking at the MAC−address unique to each NIC.

It's vital to understand that a bridge is neither a router nor a fire−wall. Spoken in simple term a bridge
behaves like a network switch (i.e. Layer 2 Switch), making it a transparent network component (which
is not absolutely true, but nearly). Read more about this at Section 3.

In addition, you can overcome hardware incompatibilities with a bridge, without leaving the address−range of
your IP−net or subnet. E.g. it's possible to bridge between different physical media like 10 Base T and 100
Base TX.

My personal reason for starting to set up a bridge was that in my work I had to connect Fast Ethernet
components to a existing HP Voice Grade network, which is a proprietary networking standard.

Features Above Pure Bridging

STP

The Spanning Tree Protocol is a nifty method of keeping Ethernet devices connected in multiple
paths working. The participating switches negotiate the shortest available path by STP. This feature
will be discussed in Section 6.1.

Multiple Bridge Instances

Multiple bridge instances allow you to have more than one bridge on your box up and running, and to
control each instance separately.

Fire−walling

There is a patch to the bridging code which allows you to use IP chains on the interface inside a
bridge. More info about this you'll find at Section 6.2.

2. What Is A Bridge? 4

3. Rules On Bridging
There is a number of rules you are not allowed to break (otherwise your bridge will do).

•
A port can only be a member of one bridge.

•
A bridge knows nothing about routes.

•
A bridge knows nothing about higher protocols than ARP. That's the reason why it can bridge any
possible protocol possibly running on your Ethernet.

•
No matter how many ports you have in your logical bridge, it's covered by only one logical interface

•
As soon as a port (e.g. a NIC) is added to a bridge you have no more direct control about it.

If one of the points mentioned above is not clear to you now, don't continue reading. Read the
documents listed in Appendix Appendix B first.

If you ever tried to ping an unmanaged switch, you will know that it doesn't work, because you don't have a
IP−address for it. To switch datagrams it doesn't need one. The other thing is if you want to manage the
switch. It's too much strain, to take a dumb terminal, walk to the place you installed it (normally a dark, dusty
and warm room, with a lot of green and red Christmas lights), to connect the terminal and to change the
settings.

What you want is remote management, usually by SNMP, telnet, rlogin or (best) ssh. For all this services you
will need a IP. That's the exception to the transparency. The new code allows you without any problem to
assign a IP address to the virtual interface formed by the bridge−instance you will create in Section 5.2. All
NIC's (or other interfaces) in your bridge will happily listen and respond to datagrams destined to this IP.

All other data will not interfere with the bridge. The bridge just acts like a switch.

3. Rules On Bridging 5

4. Preparing The Bridge
This section describes what you need and how you do to prepare your bridge.

4.1. Get The Files

Here you can find a list of the files and down−loads you will need for the setup of the bridge. If you have one
of the mentioned files or packages on your distribution, of course there is no need to create network load.

I'll only mention the files for the 2.2.14 kernel. If you want to try a different one (e.g. 2.2.15 or the recent
development kernel) just replace the kernel version number and look whether you find it.

File and package list

Unpatched kernel−sources

E.g. linux−2.2.14.tar.bz2 available from your local kernel.org mirror. Please check first if
you find it in your distribution (take unpatched kernel−sources). If you don't, please check The Linux
Kernel Archive Mirror System for a close by mirror and down−load it from there.

Bridge patches

If your kernel is later than 2.3.47 you don't need this. The bridging is part of the mainstream
from that version.

Get the bridge kernel patches for your kernel version from http://www.openrock.net/bridge/. Identify the file
by the kernel number.

There are also patches allowing to work with IP chains. I never tried it, for I don't see the
need to fire−wall inside my LAN, and absolutely no need to bridge against the outer world.
Feel free to contribute about that issue.

Kernel patches for the stable 2.2 kernel.

•
bridge−0.0.5−against−2.2.14.diff

•
bridge−0.0.5−against−2.2.15.diff

Bridge configuration utilities

You also will need the bridge configuration utilities to set up the bridge Section 5. You can also download
them from http://www.openrock.net/bridge/. The current one (as of this writing) is
bridge−utils−0.9.1.tar.gz . bridge−utils−0.9.1.tar.gz. If you have a SuSE6.4 system you can also
load it as a i386 binary RPM or the source RPM avaliable at (never mind the tcpdump)

4. Preparing The Bridge 6

http://www.kernel.org/mirrors/
http://www.kernel.org/mirrors/
http://www.kernel.org/mirrors/
http://www.kernel.org/mirrors/
http://www.openrock.net/bridge/
ftp://openrock.net/bridge/patches/bridge-0.0.5-against-2.2.14.diff
ftp://openrock.net/bridge/patches/bridge-0.0.5-against-2.2.15.diff
http://www.openrock.net/bridge/
ftp://openrock.net/bridge/bridge-utils/bridge-utils-0.9.1.tar.gz

bridge−utils−0.9.1−1.i386.rpm and bridge−utils−0.9.1−1.src.rpm.

4.2. Apply The Patches

If your kernel is later than 2.3.47 you don't need this. The bridging is part of the mainstream from that
version.

Apply the bridging patch your kernel. If you don`t know how to do that read the Kernel−HOWTO which can
be found in your distribution or at http://sunsite.unc.edu/LDP/HOWTO/HOWTO−INDEX.html

Example 1. Applying a kernel patch

root@mbb−1:~ # cd /usr/src/linux−2.2.14
root@mbb−1:/usr/src/linux−2.2.14 # patch −p1 < \

bridge−0.0.5−against−2.2.14.diff
.
.

4.3. Configure The Kernel

Now it's time we configure our freshly patched kernel to create the ability to bridge.

Run make config, make menuconfig or the click−o−rama make xconfig. Select bridging in the
networking option section to be compiled as a module. AFAIK there is no strong reason why not to compile
it as a kernel module, whereas I heard rumors about problems with compiling the bridging code directly into
the kernel.

root@mbb−1:~ # cd /usr/src/linux−2.2.14
root@mbb−1:/usr/src/linux−2.2.14 # make menuconfig
.

4.4. Compile The Kernel

Compile your kernel Example 2. Make the new compiled kernel−image to be loaded. I don't know if the
kernel patches only apply to the bridging−module or also modify some interfaces inside vmlinuz. So it
might not be a error to give a reboot after you updated the kernel−image.

Example 2. Commands To Compile Your Kernel

root@mbb−1:/usr/src/linux−2.2.14 # make dep clean zImage modules modules_install zlilo
...

Linux BRIDGE−STP−HOWTO

4.2. Apply The Patches 7

ftp://openrock.net/tcpdump/bridge-utils/bridge-utils-0.9.1-1.i386.rpm
ftp://openrock.net/tcpdump/bridge-utils/bridge-utils-0.9.1-1.src.rpm
http://sunsite.unc.edu/LDP/HOWTO/HOWTO-INDEX.html

4.5. Compile The Bridge Utilities

If you downloaded the binary rpm for SuSE6.4 from bridge−utils−0.9.1−1.i386.rpm of course there is no
more action necessary than installing it.

This is how to compile and install from the scratch. Just unzip the utilities−tarball, cd into the newly created
directory and give a make.

Example 3. Commands To Compile Your Bridge−Utilities

root@mbb−1:/usr/src/linux−2.2.14 # cd /usr/local/src
root@mbb−1:/usr/local/src/ # tar xzvf bridge−utils−0.9.1.tar.gz
.....
....
root@mbb−1:/usr/local/src # cd bridge
root@mbb−1:/usr/local/src/bridge # make
.....
....

After the compilation shown in Example 3 have worked properly, you can copy the executables to let's say
/usr/sbin/ (at least I did). So the commands you have to give should be clear, but to be complete see
Example 4

Example 4. Copy The Binaries Of The Utilities

root@mbb−1:/usr/local/src/bridge # cd brctl
root@mbb−1:/usr/local/src/bridge/brctl # cp brctl /usr/bin/local
root@mbb−1:/usr/local/src/bridge/brctl # chmod 700 /usr/bin/local/brctl
root@mbb−1:/usr/local/src/bridge/brctl # cp brctld /usr/bin/local
root@mbb−1:/usr/local/src/bridge/brctl # chmod 700 /usr/bin/local/brctld

Also now you can copy the new man−page to a decent place, as shown in Example 5.

Example 5. Copy The Man−page Of brctl

root@mbb−1:/usr/local/src/bridge # cd doc
root@mbb−1:/usr/local/src/bridge/doc # gzip −c brctl.8 > /usr/local/man/man8/brctl.8.gz

Linux BRIDGE−STP−HOWTO

4.5. Compile The Bridge Utilities 8

ftp://openrock.net/tcpdump/bridge-utils/bridge-utils-0.9.1-1.i386.rpm

5. Set Up The Bridge
Make sure all your network cards are working nicely and are accessible. If so, ifconfig will show you the
hardware layout of the network−interface. If you have problems making your cards work please read the
Ethernet−HOWTO at http://sunsite.unc.edu/LDP/HOWTO/HOWTO−INDEX.html . Don't mess around with
IP−addresses or net−masks. You will not need it, until you bridge fully operational an up.

After you did the steps mentioned above a modprobe −v bridge should show no errors. You can check the
success by issuing a cat /proc/modules. Also for each of the network cards you want to use in the bridge the
ifconfig whateverNameYourInterfaceHas should give you some information about the interface.

If your bridge−utilities have been correctly built and your kernel and bridge−module are OK, then issuing a
brctl should show a small command synopsis.

5.1. brctl Command Synopsis

root@mbb−1:~ # brctl
commands:
 addbr <bridge> add bridge
 addif <bridge> <device> add interface to bridge
 delbr <bridge> delete bridge
 delif <bridge> <device> delete interface from bridge
 show show a list of bridges
 showbr <bridge> show bridge info
 showmacs <bridge> show a list of mac addrs

 setageing <bridge> <time> set ageing time
 setbridgeprio <bridge> <prio> set bridge priority
 setfd <bridge> <time> set bridge forward delay
 setgcint <bridge> <time> set garbage collection interval
 sethello <bridge> <time> set hello time
 setmaxage <bridge> <time> set max message age
 setpathcost <bridge> <port> <cost> set path cost
 setportprio <bridge> <port> <prio> set port priority
 stp <bridge> <state> {dis,en}able stp

The brctl addbr bridgename command creates a logical bridge instance with the name
bridgename. You will need at least one logical instance to do any bridging at all. You can interpret
the logical bridge being a container for the interfaces taking part in the bridging. Each bridging
instance is represented by a new network interface.

Example 6. Creating A Instance

root@mbb−1:~ # brctl addbr mybridge1

The corresponding "shutdown" command is brctl delbr bridgename.

brctl delbr bridgename will only work, if there are no more interfaces added to the instance you
want to delete.

5. Set Up The Bridge 9

http://sunsite.unc.edu/LDP/HOWTO/HOWTO-INDEX.html

The brctl addif bridgename device command enslaves the network device device to take part in the
bridging of bridgename. As a simple explanation, each interface enslaved into a instance is bridged to the
other interfaces of the instance.

The corresponding command to tale a interface out of the bridge would be brctl delif
bridgename device

The brctl show command gives you a summary about the overall bridge status, and the instances running as
shown in Example 7. If you are interested in detailed information about a instance and it's interfaces you will
have to check .

Example 7. Output Of brctl show

root@mbb−1:~ # brctl show
bridge name bridge id stp enabled
mybridge1 0000.0800062815f6 yes

The brctl showbr bridgename command gives you a summary about a bridge instance and it's enslaved
interfaces.

Example 8. Output Of brctl showbr bridgename

root@mbb−1:~ # brctl showbr mybridge1
mybridge1
 bridge id 0000.0800062815f6
 designated root 0000.0800062815f6
 root port 0 path cost 0
 max age 4.00 bridge max age 4.00
 hello time 1.00 bridge hello time 1.00
 forward delay 4.00 bridge forward delay 4.00
 ageing time 300.00 gc interval 4.00
 hello timer 0.84 tcn timer 0.00
 topology change timer 0.00 gc timer 1.84
 flags

eth0 (1)
 port id 8001 state forwarding
 designated root 0000.0800062815f6 path cost 100
 designated bridge 0000.0800062815f6 message age timer 0.00
 designated port 8001 forward delay timer 0.00
 designated cost 0 hold timer 0.84
 flags

eth1 (2)
 port id 8002 state forwarding
 designated root 0000.0800062815f6 path cost 100
 designated bridge 0000.0800062815f6 message age timer 0.00
 designated port 8002 forward delay timer 0.00
 designated cost 0 hold timer 0.84
 flags

The brctl showmacs bridgename command gives you a list of MAC−addresses of the interfaces which
are enslaved in bridgename.

Linux BRIDGE−STP−HOWTO

5. Set Up The Bridge 10

Example 9. Output Of brctl showmacs bridgename

root@mbb−1:~ # brctl showmacs mybridge1
port no mac addr is local? ageing timer
 1 00:10:4b:b6:c6:e4 no 119.25
 1 00:50:04:43:82:85 no 0.00
 1 00:50:da:45:45:b1 no 76.75
 1 00:a0:24:d0:4c:d6 yes 0.00
 1 00:a0:24:f0:22:71 no 5.81
 1 08:00:09:b5:dc:41 no 22.22
 1 08:00:09:fb:39:a1 no 27.24
 1 08:00:09:fc:92:2c no 53.13
 4 08:00:09:fc:d2:11 yes 0.00
 1 08:00:09:fd:23:88 no 230.42
 1 08:00:09:fe:0d:6f no 144.55

Sets the aging time. The aging time is the number of seconds a MAC−address will be kept in the forwarding
database after having received a packet from this MAC address. The entries in the forwarding database are
periodically timed out to ensure they won't stay around forever. Normally there should be no need to modify
this parameter.
Sets the bridge's relative priority. The bridge with the lowest priority will be elected as the root bridge. The
root bridge is the "central" bridge in the spanning tree. More information about STP you find at Section 6.1.
Sets the forwarding delay time. The forwarding delay time is the time spent in each of the Listening and
Learning states before the Forwarding state is entered.
Sets the garbage collection interval. Every (this number) seconds, the entire forwarding database is checked
for timed−out entries. The timed−out entries are removed.
Sets the hello time. Every (this number) seconds, a hello packet is sent out by the Root Bridge and the
Designated Bridges. Hello packets are used to communicate information about the topology throughout the
entire Bridged Local Area Network. More information about STP you find at Section 6.1.
Sets the maximum message age. If the last seen (received) hello packet is more than this number of seconds
old, the bridge in question will start the takeover procedure in attempt to become the Root Bridge itself. More
information about STP you find at Section 6.1.
Sets the cost of receiving (or sending, I'm not sure) a packet on this interface. Faster interfaces should have
lower path costs. These values are used in the computation of the minimal spanning tree. More information
about STP you find at Section 6.1. Paths with lower costs are likelier to be used in the spanning tree than
high−cost paths (As an example, think of a gigabit line with a 100Mbit or 10Mbit line as a backup line. You
don't want the 10/100Mbit line to become the primary line there.)

The Linux implementation currently sets the path cost of all eth* interfaces to 100, the nominal cost for a
10Mbit connection. There is unfortunately no easy way to discern 10Mbit from 100Mbit from 1Gbit Ethernet
cards, so the bridge cannot use the real interface speed.

With this parameter you can enable or disable the Spanning Tree Protocol.
This parameters are only of interest, if you have more than one bridge in your LAN and stp enabled. Before
modifying them you should read Section 6.1.

5.2. Basic Setup

The standard configuration should consist of:

Linux BRIDGE−STP−HOWTO

5.2. Basic Setup 11

1. Create the bridge interface.

root@mbb−1:~ # brctl addbr mybridge

2.
Add interfaces to the bridge.

root@mbb−1:~ # brctl addif mybridge eth0
root@mbb−1:~ # brctl addif mybridge eth1

3.
Zero IP the interfaces.

root@mbb−1:~ # ifconfig eth0 0.0.0.0
root@mbb−1:~ # ifconfig eth1 0.0.0.0

4.
Optionally you can configure the virtual interface mybridge to take part in your network. It
behaves like one interface (like a normal network card). Exactly that way you configure it.

root@mbb−1:~ # ifconfig mybridge 192.168.100.5 netmask 255.255.255.0 up

A more sophisticated setup script you will find at Example 16.

If you get the terrible experience of a frozen system or some nasty behavior
of your nicely shaped linux box at

root@mbb−1:~ # ifconfig ethn 0 0.0.0.0

please try (after the reboot of the system if necessary) before starting any
bridge stuff at all a

root@mbb−1:~ # ifconfig ethn promisc up

If again your system is frozen it's you NIC's driver you have to blame, not
the bridging code.

Linux BRIDGE−STP−HOWTO

5.2. Basic Setup 12

6. Advanced Bridge Features
Here we will cover some advanced features of the new bridge code.

6.1. Spanning Tree Protocol

Tell me...

•
You are a networkadmin...?

•
You have a switch on top of your ethernet tree...?

•
You have nightmares of a switch emmiting smoke...?

•
Your company is not extremely rich and con provide another redundant switch just waiting for you to
plug the patchwires..?

•
You don't feel like placing your bed close to your main network node to plug the wires...?

Don't wait until you're just another nervous wreck. Join linux bridge community and enjoy the relaxment
a stp−enabled inhouse scenario is offering to you.

Ok, let's leave that commercial and get back linux and the bridge. Take a look on this small thread from the
linux−bridge mailing list.

STP Thread from bridge@openrock.net

Could you give me some hints about multi−bridge scenarios.
Does the STP "heartbeat" mechanism also work with bridges with more than two cards?
How fast does it get up, and what can I do about it?

 Could you give me some hints about multi−bridge scenarios.

You can just set up two "mirrored" bridges. You have two network interfaces in your bridge? Set up the
mirror bridge so that it has two network interfaces as well, and connect each of the interfaces to one subnet.
This will work without the need of configuration.

Be sure that you have the spanning tree protocol enabled. If you didn't use brctl, this should be fine,
because in Linux, it is on by default. To check, you could check whether the bridge sends a packet to
0180c2000000 every 2 seconds. If it does, the STP is on. The STP is needed so that only one bridge
will be active at any given time.

6. Advanced Bridge Features 13

The "master" bridge will send out STP packets every 2 seconds by default. The "slave" bridge will receive
these packets, and will notice that the master is still up. If the slave hasn't received a packet in 20 seconds
(max. message age parameter), it will start the takeover procedure. From the moment the takeover procedure
starts, it will take about 30 seconds (twice the forward delay parameter) for the bridge to become fully
operational.

 Does the STP "heartbeat" mechanism also work with bridges with more than two cards?

Yes, it works with any number of interfaces. You can invent bizarre topologies to your heart's desire. You
can use multiple (redundant) bridge−bridge connects, you can insert loops, whatever. The STP code will
always find the minimal spanning tree. The bridge code will even deal with the loss of any number of
interfaces. If there are two redundant bridges with identical connections, the loss of an interface on one of the
bridges will cause the other bridge to take over forwarding to that specific interface. Now isn't that great? :)

 How fast does it get up, and what can I do about it?

If you think 50 seconds is too much −− and I guess you should; alas, the IEEE specs gives us these default
values −− you can tweak these parameters. If you set the hello time (the STP packet interval) from 2 to 1
second, you can safely set the message age parameter to 4 seconds. Then you can set the forward delay to 4
seconds, and this will in total give you a takeover time of ~12 seconds.

The great thing which is made possible by STP is a redundant parallel bridging scenario, with automated take
over features. Within a network basing on stp the bridges always try to send a datagram the (by path cost)
shortest path. Only on that path the bridges are forwarding, all other paths between this shortest way are
blocked. If there is a broken path, the bridges agree about the next shortest. So doubled paths don't break the
net, but are bringing more security... For a example setup of a fail secured connection see Section 7.

6.2. Bridge And The IP−Chains

The normal idea about a bridge would not allow anything like firewalling, but since several people have
asked Lennert for ipchains firewalling on bridge forwarding he implemented it.

If you want to do this, you will need to apply the special ip−chain−bridge−patch (also available at the
bridge homepage).

As soon you have everything up correctly, the bridging code will check each to−be−forwarded packet against
the ipchains chain which has the same name as the bridge.

So.. if a packet on eth0 is to be forwarded to eth1, and those interfaces are both part of the bridge group br0,
the bridging code will check the packet against the chain called 'br0'.

If the chain does not exist, the packet will be forwarded. So if you want to do firewalling, you'll have to
create the chain yourself.

Example 10. A Simple Bridge Firewall Setup

Linux BRIDGE−STP−HOWTO

6.2. Bridge And The IP−Chains 14

http://openrock.net/bridge/
http://openrock.net/bridge/

Example:
brctl addbr br0
brctl addif br0 eth0
brctl addif br0 eth1
ifconfig br0 10.0.0.254
ipchains −N br0
ipchains −A br0 −s 10.0.0.1/8 −i eth0 −j DENY

Creating a bridge interface named br0
Placing eth0 and eth1 into the bridge.
Assigning a regular IP address to the bridge. The IP is taken from private network 10.X.X.X (Class
A).
Creating a ip−chain named br0

It's vital to have the same name here (br0 or whatever you have selected, as long as you have the same
in all places).

Denying all trafic with source 10.X.X.X on eth0.

Linux BRIDGE−STP−HOWTO

6.2. Bridge And The IP−Chains 15

7. A Practical Setup Example
This is a real−world example which is currently working in our network. Even if it's for sure not a very
common situation it might be useful.

I had to solve a small hardware incompatibility. HP−VG (Voice Grade) 100Mbit network is not fast Ethernet
compatible. Having neither the money nor the will to replace the stuff and having the need to expand the
system I had to find a solution which was a) stable and b) cheap.

For sure buying a HP modular switch was not meeting condition b). So I remembered I heard about
Linux−bridging which automatically fulfilled condition a) and b).

So quite some time ago I successfully set up a bridge between the two incompatible networks. Its first
hardware−layout is shown in Figure 1.

Figure 1. Hardware setup Of The Old Bridge Scenario

The old setup of my previous linux bridge

It was configured as a transparent network component, meaning it didn't take a part in the network, but only
bridged it. Originally it was set up on kernel 2.0.35 from a SuSE 5.3 distribution.

The next problem showed up at once. A single bridge connecting the big segments might be c) a bottleneck
and d) a reason to kill the netadmin, if it blows up. So I tried to find some solution for that problem.

What happened next was that I discovered some hints that a new maintainer took over the bridging code. A
few mails on the bridge−mailing list later as shown in Section 6.1 I was more clever. The new modular
bridging code fulfilled exactly what I was looking for.

The new maintainer: Lennert Buytenhek . His project page can be found at
http://openrock.net/bridge IMHO he's doing a great job. Thanks a lot.

7.1. Hardware−setup

The ideas and hints I got from the mailing list discussion shown in Section 6.1 lead to a new hardware−setup
shown in Figure 2. The setup is intended to provide a default machine (guess which one). The bridge has 3
HP cards of which each is connected to a HP VG15 hub. The 3com card is connected to a 3com Superstack
Fast Ethernet switch.

Figure 2. Hardware Setup Of The Multi bridge Scenario

The practically working setup of my local linux Ethernet multi bridge

This setup is not only fail proof to any one of the bridge's interfaces being down, but also to complete
blackout of one of the bridges. Additional advantage to the old−setup Figure 1 that the single HUBS are

7. A Practical Setup Example 16

http://openrock.net/bridge

switched. This means that a datagram being sent from one port on the VG15 HUB blocks 30 ports by
maximum and 15 ports by minimum, instead of blocking all 45 ports. Also, the breakdown of the HUB, to
the old bridge was connected, would have caused the whole HP−segment to break down. With the new code
only the machines connected to the broken HUB will get no more data.

7.2. Software−setup

For both bridges the setup is exactly the same (with the exception of bridge priority which will be discussed
later on). The machine was setup by the SuSE 6.4 distribution with the original unpatched kernel sources
installed. At this point only the minimal configuration and no additional hardware or network setup.

The basic setup is according the descriptions in the beginning of this document. The thing I did in addition
was bringing up the unpatched 2.2.14 sources of the SuSE 6.4 distribution to version 2.2.15 as in Example
11.

Example 11. Upgrading The Kernel From 2.2.14 To 2.2.15

root@mbb−1:~ # cd /usr/src/linux−2.2.14
root@mbb−1:/usr/src/linux−2.2.14 # patch −p1 \

/usr/local/download/kernel/patch−2.2.15
patching file
patching file
...
..
root@mbb−1:/usr/src/linux−2.2.14 # cd ..
root@mbb−1:/usr/src # mv linux−2.2.14 linux−2.2.15
root@mbb−1:/usr/src # rm linux
root@mbb−1:/usr/src # ln −s linux−2.2.15 linux

Next step was to apply the bridge−patch as shown in Example 12.

Example 12. Applying The Kernel Patch

root@mbb−1:/usr/src # cd /usr/src/linux−2.2.15
root@mbb−1:/usr/src/linux−2.2.15 # patch −p1 < \

bridge−0.0.5−against−2.2.15.diff
patching file
patching file
...
..

After that I selected the bridging code to be compiled as a module as shown in Example 13.

Example 13. Configuring The Kernel

root@mbb−1:/usr/src/linux−2.2.15 # make config

..

Linux BRIDGE−STP−HOWTO

7.2. Software−setup 17

*
* Code maturity level options
*
Prompt for development and/or incomplete code/drivers (CONFIG_EXPERIMENTAL)
[N/y/?] Y

..

802.1d Ethernet Bridging (CONFIG_BRIDGE) [N/y/m/?] (NEW) m

..

By the way I also selected the drivers of my NIC's to be compiled as modules which resulted to
3c95x.o and hp100.o.

root@mbb−1:/usr/src/linux−2.2.15 # make dep clean zImage \
 modules modules_install zlilo

..

root@mbb−1:/usr/src/linux−2.2.15 # init 6

After the reboot happening I started at runlevel 1 leaving all the networking out of the running system. That
gave me the chance to check the setup step by step.

The command modprobe −v bridge worked without any warnings, so that one was OK. Next I edited my
/etc/modules.conf by aliasing my network card drivers as shown in Example 14 and Example 15. I
didn't need to make use of the options, all cards where realized proper as I checked by cat /proc/modules,
cat /proc/interrupts and cat /proc/ioports.

Example 14. /etc/modules.conf of mbb−1

Aliases − specify your hardware
alias eth0 3c59x
alias eth1 hp100
alias eth2 hp100
alias eth3 hp100

Example 15. /etc/modules.conf of mbb−2

Aliases − specify your hardware
alias eth0 3c509
alias eth1 hp100
alias eth2 hp100
alias eth3 hp100

So next thing would have been a step by step setup of the bridge and it's interfaces. Because I'm lazy I just
show the init script I prepared for the setup.

Linux BRIDGE−STP−HOWTO

7.2. Software−setup 18

Of course you'll have do adapt the script to your system, if you want to use it. Please remember I'm
writing this for the setup of a SuSE distribution.

Example 16. Bridge Init Script

#! /bin/bash
Copyright (c) 2000 Uwe Böhme. All rights reserved.
#
Author: Uwe Böhme <uwe@bnhof.de>, 2000
#
#
/sbin/init.d/bridge
#

. /etc/rc.config

return=$rc_done
case "$1" in
 start)
 echo "Starting service bridge mueb"
 brctl addbr mueb || return=$rc_failed
 brctl setbridgeprio mueb 0 || return=$rc_failed
 brctl addif mueb eth0 || return=$rc_failed
 brctl addif mueb eth1 || return=$rc_failed
 brctl addif mueb eth2 || return=$rc_failed
 brctl addif mueb eth3 || return=$rc_failed
 ifconfig eth0 0.0.0.0 || return=$rc_failed
 ifconfig eth1 0.0.0.0 || return=$rc_failed
 ifconfig eth2 0.0.0.0 || return=$rc_failed
 ifconfig eth3 0.0.0.0 || return=$rc_failed
 brctl sethello mueb 1 || return=$rc_failed
 brctl setmaxage mueb 4 || return=$rc_failed
 brctl setfd mueb 4 || return=$rc_failed

 echo −e "$return"
 ;;
 stop)
 echo "Shutting down service bridge mueb"
 brctl delif mueb eth3 || return=$rc_failed
 brctl delif mueb eth2 || return=$rc_failed
 brctl delif mueb eth1 || return=$rc_failed
 brctl delif mueb eth0 || return=$rc_failed
 brctl delbr mueb || return=$rc_failed
 rmmod bridge || return=$rc_failed

 echo −e "$return"
 ;;
 status)
 ifconfig mueb
 brctl showbr mueb

 ;;
 restart)
 $0 stop 38;38; $0 start || return=$rc_failed
 ;;
 *)
 echo "Usage: $0 {start|stop|status|restart}"
 exit 1

Linux BRIDGE−STP−HOWTO

7.2. Software−setup 19

esac

test "$return" = "$rc_done" || exit 1
exit 0

This command creates a new virtual interface (bridge instance) with the name mueb and also brings
up the bridge module.

At least my system it does. Maybe you have to enable the kernel module loader.

Here the script sets the bridge's priority (relative to other bridges in the net) to 0. This is indicating that this
bridge will become the root bridge as long as there is no other bridge with a lower priority level available.

In the init script of the backup bridge this line in missing, leaving it with the default priority of 100.

Enslaves the Ethernet interface to become a port in the bridge.
Takes away any possibly disturbing IP−address and brings the interface up.
Setting the hello time of the bridge to one second makes it possible to reduce the maxage value of the bridges
inside the network.
Setting the time the a bridge is waiting before starting the takeover process to a shorter period.
Forcing the bridge to forward earlier than the default time.
Take the Ethernet out of the bridging instance.
Destroy the bridge instance.
Remove the bridge module.

To polish your setup and to be able to reach the bridge from remote you now can configure your bridge
instance as if it would be a physical existing network interface. You can give it a nice IP with a suitable
net−mask. It doesn't matter from which segment in you net, you will reach the bridge with this IP−address.

7.3. See It Work

Here I want to show and explain about how the running bridge shows up. The output Example 17 of
bridge@mbb−1 is the output of the primary bridge, while you see in Example 18 the output of the backup
bridge waiting to take over.

Example 17. Status Output Of mbb−1 Fully Up

mueb
 bridge id 0000.0800062815f6
 designated root 0000.0800062815f6
 root port 0 path cost 0
 max age 4.00 bridge max age 4.00
 hello time 1.00 bridge hello time 1.00
 forward delay 4.00 bridge forward delay 4.00
 ageing time 300.00 gc interval 4.00
 hello timer 0.80 tcn timer 0.00
 topology change timer 0.00 gc timer 3.80

Linux BRIDGE−STP−HOWTO

7.3. See It Work 20

 flags

eth0 (1)
 port id 8001 state forwarding
 designated root 0000.0800062815f6 path cost 100
 designated bridge 0000.0800062815f6 message age timer 0.00
 designated port 8001 forward delay timer 0.00
 designated cost 0 hold timer 0.80
 flags

eth1 (2)
 port id 8002 state forwarding
 designated root 0000.0800062815f6 path cost 100
 designated bridge 0000.0800062815f6 message age timer 0.00
 designated port 8002 forward delay timer 0.00
 designated cost 0 hold timer 0.80
 flags

eth2 (3)
 port id 8003 state forwarding
 designated root 0000.0800062815f6 path cost 100
 designated bridge 0000.0800062815f6 message age timer 0.00
 designated port 8003 forward delay timer 0.00
 designated cost 0 hold timer 0.80
 flags

eth3 (4)
 port id 8004 state forwarding
 designated root 0000.0800062815f6 path cost 100
 designated bridge 0000.0800062815f6 message age timer 0.00
 designated port 8004 forward delay timer 0.00
 designated cost 0 hold timer 0.80
 flags

Example 18. Status Output Of mbb−2 Fully Up

mueb
 bridge id 0064.00a024d04cd6
 designated root 0000.0800062815f6
 root port 1 path cost 100
 max age 4.00 bridge max age 4.00
 hello time 1.00 bridge hello time 1.00
 forward delay 4.00 bridge forward delay 4.00
 ageing time 300.00 gc interval 4.00
 hello timer 0.00 tcn timer 0.00
 topology change timer 0.00 gc timer 2.39
 flags

eth0 (1)
 port id 8001 state forwarding
 designated root 0000.0800062815f6 path cost 100
 designated bridge 0000.0800062815f6 message age timer 0.42
 designated port 8001 forward delay timer 0.00
 designated cost 0 hold timer 0.00
 flags

Linux BRIDGE−STP−HOWTO

7.3. See It Work 21

eth1 (2)
 port id 8002 state blocking
 designated root 0000.0800062815f6 path cost 100
 designated bridge 0000.0800062815f6 message age timer 0.42
 designated port 8002 forward delay timer 0.00
 designated cost 0 hold timer 0.00
 flags

eth2 (3)
 port id 8003 state blocking
 designated root 0000.0800062815f6 path cost 100
 designated bridge 0000.0800062815f6 message age timer 0.42
 designated port 8003 forward delay timer 0.00
 designated cost 0 hold timer 0.00
 flags

eth3 (4)
 port id 8004 state blocking
 designated root 0000.0800062815f6 path cost 100
 designated bridge 0000.0800062815f6 message age timer 0.42
 designated port 8004 forward delay timer 0.00
 designated cost 0 hold timer 0.00
 flags

If you take a glance into /var/log/messages as shown in Example 19 and in Example 20 you can see
how the bridges are coming up and deciding how to do their duty. mbb−1 has a lower value for
bridge−priority (see), telling it to try to become the root bridge. As you can see mbb−1 forwards all ports,
while mbb−2 blocks all ports with the exception of eth0.

Example 19. mbb−1 Messages From init 2

May 25 16:46:04 mbb−1 init: Switching to runlevel: 2
May 25 16:46:04 mbb−1 kernel: NET4: Ethernet Bridge 008 for NET4.0
May 25 16:46:04 mbb−1 kernel: device eth0 entered promiscuous mode
May 25 16:46:04 mbb−1 kernel: device eth1 entered promiscuous mode
May 25 16:46:04 mbb−1 kernel: device eth2 entered promiscuous mode
May 25 16:46:04 mbb−1 kernel: device eth3 entered promiscuous mode
May 25 16:46:04 mbb−1 kernel: mueb: port 4(eth3) entering listening state
May 25 16:46:04 mbb−1 kernel: mueb: port 3(eth2) entering listening state
May 25 16:46:04 mbb−1 kernel: mueb: port 2(eth1) entering listening state
May 25 16:46:04 mbb−1 kernel: mueb: port 1(eth0) entering listening state
May 25 16:46:08 mbb−1 kernel: mueb: port 4(eth3) entering learning state
May 25 16:46:08 mbb−1 kernel: mueb: port 3(eth2) entering learning state
May 25 16:46:08 mbb−1 kernel: mueb: port 2(eth1) entering learning state
May 25 16:46:08 mbb−1 kernel: mueb: port 1(eth0) entering learning state
May 25 16:46:12 mbb−1 kernel: mueb: port 4(eth3) entering forwarding state
May 25 16:46:12 mbb−1 kernel: mueb: topology change detected, propagating
May 25 16:46:12 mbb−1 kernel: mueb: port 3(eth2) entering forwarding state
May 25 16:46:12 mbb−1 kernel: mueb: topology change detected, propagating
May 25 16:46:12 mbb−1 kernel: mueb: port 2(eth1) entering forwarding state
May 25 16:46:12 mbb−1 kernel: mueb: topology change detected, propagating
May 25 16:46:12 mbb−1 kernel: mueb: port 1(eth0) entering forwarding state
May 25 16:46:12 mbb−1 kernel: mueb: topology change detected, propagating

Example 20. mbb−2 Messages From init 2

Linux BRIDGE−STP−HOWTO

7.3. See It Work 22

Jun 8 06:06:16 mbb−2 init: Switching to runlevel: 2
Jun 8 06:06:17 mbb−2 kernel: NET4: Ethernet Bridge 008 for NET4.0
Jun 8 06:06:17 mbb−2 kernel: device eth0 entered promiscuous mode
Jun 8 06:06:17 mbb−2 kernel: device eth1 entered promiscuous mode
Jun 8 06:06:17 mbb−2 kernel: device eth2 entered promiscuous mode
Jun 8 06:06:17 mbb−2 kernel: device eth3 entered promiscuous mode
Jun 8 06:06:17 mbb−2 kernel: mueb: port 4(eth3) entering listening state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 3(eth2) entering listening state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 2(eth1) entering listening state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 1(eth0) entering listening state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 2(eth1) entering blocking state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 3(eth2) entering blocking state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 4(eth3) entering blocking state
Jun 8 06:06:21 mbb−2 kernel: mueb: port 1(eth0) entering learning state
Jun 8 06:06:25 mbb−2 kernel: mueb: port 1(eth0) entering forwarding state

7.4. Bridge Tests

To check if really all the promised features are working, I did some crude test. The message logs are shown
here in.

7.4.1. Tear The Patch Wire Test

I think just taking a patch wire out of a bridge port is a really good real survival test. So I pulled the plugs one
by one out of the sockets and looked what happened. To give you not too much tension let me summarize
first: It's really working. All the takeovers happened within less then 12 seconds.

The really interesting messages you can find at mbb−2. To see how everything comes up, I stopped network
services first. In Example 21 you will see the messages caused by a init 2 followed by a "take out the plug,
wait what happens, then place it back" in the order eth3, eth2, eth1, eth0 .

The thing I did, was making the tests, and publishing the dump. The one writing the nice explanations
was Lennert again.

Example 21. mbb−2 Message Output Of Bridge Test

Jun 8 06:06:16 mbb−2 init: Switching to runlevel: 2
Jun 8 06:06:17 mbb−2 kernel: NET4: Ethernet Bridge 008 for NET4.0
Jun 8 06:06:17 mbb−2 kernel: device eth0 entered promiscuous mode
Jun 8 06:06:17 mbb−2 kernel: device eth1 entered promiscuous mode
Jun 8 06:06:17 mbb−2 kernel: device eth2 entered promiscuous mode
Jun 8 06:06:17 mbb−2 kernel: device eth3 entered promiscuous mode
Jun 8 06:06:17 mbb−2 kernel: mueb: port 4(eth3) entering listening state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 3(eth2) entering listening state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 2(eth1) entering listening state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 1(eth0) entering listening state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 2(eth1) entering blocking state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 3(eth2) entering blocking state
Jun 8 06:06:17 mbb−2 kernel: mueb: port 4(eth3) entering blocking state

Linux BRIDGE−STP−HOWTO

7.4. Bridge Tests 23

Jun 8 06:06:21 mbb−2 kernel: mueb: port 1(eth0) entering learning state
Jun 8 06:06:25 mbb−2 kernel: mueb: port 1(eth0) entering forwarding state
Jun 8 06:07:15 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 4(eth3)
Jun 8 06:07:15 mbb−2 kernel: mueb: port 4(eth3) entering listening state
Jun 8 06:07:19 mbb−2 kernel: mueb: port 4(eth3) entering learning state
Jun 8 06:07:23 mbb−2 kernel: mueb: port 4(eth3) entering forwarding state
Jun 8 06:07:23 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 8 06:08:51 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 8 06:08:51 mbb−2 kernel: mueb: port 4(eth3) entering blocking state
Jun 8 06:09:22 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 3(eth2)
Jun 8 06:09:22 mbb−2 kernel: mueb: port 3(eth2) entering listening state
Jun 8 06:09:26 mbb−2 kernel: mueb: port 3(eth2) entering learning state
Jun 8 06:09:30 mbb−2 kernel: mueb: port 3(eth2) entering forwarding state
Jun 8 06:09:30 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 8 06:10:09 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 8 06:10:09 mbb−2 kernel: mueb: port 3(eth2) entering blocking state
Jun 8 06:10:10 mbb−2 kernel: mueb: retransmitting tcn bpdu
Jun 8 06:10:41 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 2(eth1)
Jun 8 06:10:41 mbb−2 kernel: mueb: port 2(eth1) entering listening state
Jun 8 06:10:45 mbb−2 kernel: mueb: port 2(eth1) entering learning state
Jun 8 06:10:49 mbb−2 kernel: mueb: port 2(eth1) entering forwarding state
Jun 8 06:10:49 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 8 06:11:06 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 8 06:11:06 mbb−2 kernel: mueb: port 2(eth1) entering blocking state
Jun 8 06:11:33 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 1(eth0)
Jun 8 06:11:33 mbb−2 kernel: mueb: port 2(eth1) entering listening state
Jun 8 06:11:37 mbb−2 kernel: mueb: port 2(eth1) entering learning state
Jun 8 06:11:41 mbb−2 kernel: mueb: port 2(eth1) entering forwarding state
Jun 8 06:11:41 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 8 06:14:18 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 8 06:14:18 mbb−2 kernel: mueb: port 2(eth1) entering blocking state
Jun 8 06:14:19 mbb−2 kernel: mueb: retransmitting tcn bpdu

4What Lennert Told About This

The kernel sees that there are already bridges (actually, only one of them, but Hello packets are
coming in on all 4 of the ports) on eth[0123].
To maintain connectivity with the rest of the network, the bridge decides to keep port 1 (eth0) active
(i.e. in the "forwarding" state), and to temporarily disable ports 2−4.
The plug on eth3 was pulled. Here you can see that the message age timer expired (). The last Hello
packet was seen more than X seconds ago. The bridge concludes that the connection to the bridge
that was there has died. Therefore, it is going to try to enable this port, to provide network
connectivity to the now−cutoff segment.
It enters the listening state. It waits to see whether the old bridge might come back, or whether
another bridge is going to claim takeover.
Okay, no other bridge was seen. We're going to try to provide network connectivity to this segment
ourselves. Which means: we're going to try and become "designated bridge" for this segment. We
now enter the learning state. In this state, we only learn MAC addresses and we do not forward yet.
This is because if we see an unknown destination address, we send the datagram to all ports, and this
"flooding" will happen unnecessarily often if we have a empty MAC table. Therefore, we're going to
fill up our MAC table with useful entries first, and this is what happens during the learning state.
Okay, here we go. Pray for us.
Because we took over for this segment, all communication towards this segment now goes through
this bridge. This means that the topology has changed. If the topology changes, we must let all
bridges now, so that they can time out stale MAC address location data quickly. This is why we send

Linux BRIDGE−STP−HOWTO

7.4. Bridge Tests 24

Topology Change Notification Bridge Protocol Data Units (tcn bpdus).

Apparently the root bridge immediately acknowledges this tcn bpdu in the next Hello message it
sends (the protocol requires for the root bridge to acknowledge it), because this is the only such
message we see.

In situations where you see loads of these messages, it means that the root bridge cannot acknowledge
them, which probably means your root bridge has a twisted STP implementation.

Hey, something happened again!
Yup... eth3 came back online. The root bridge will provide connectivity for this segment again, so that we can
disable this port.
Same story for eth2, eth1 and eth0.
This means the tcn bpdu wasn't acknowledged quick enough. That is why it is retransmitted.

The root bridge mbb−1 was not so chatty. It only reported some topology changes and propagated them as
you can see in Example 22. If somebody can offer a explanation why the root bridge is so quiet in messaging
please tell me.

Example 22. mbb−2 Message Output Of Bridge Test

Jun 8 06:06:52 mbb−1 kernel: mueb: received tcn bpdu on port 1(eth0)
Jun 8 06:06:52 mbb−1 kernel: mueb: topology change detected, propagating
Jun 8 06:07:31 mbb−1 kernel: mueb: received tcn bpdu on port 1(eth0)
Jun 8 06:07:31 mbb−1 kernel: mueb: topology change detected, propagating
Jun 8 06:07:32 mbb−1 kernel: mueb: received tcn bpdu on port 1(eth0)
Jun 8 06:07:32 mbb−1 kernel: mueb: topology change detected, propagating
Jun 8 06:08:11 mbb−1 kernel: mueb: received tcn bpdu on port 1(eth0)
Jun 8 06:08:11 mbb−1 kernel: mueb: topology change detected, propagating
Jun 8 06:08:29 mbb−1 kernel: mueb: received tcn bpdu on port 1(eth0)
Jun 8 06:08:29 mbb−1 kernel: mueb: topology change detected, propagating
Jun 8 06:09:03 mbb−1 kernel: mueb: received tcn bpdu on port 2(eth1)
Jun 8 06:09:03 mbb−1 kernel: mueb: topology change detected, propagating
Jun 8 06:11:40 mbb−1 kernel: mueb: received tcn bpdu on port 1(eth0)
Jun 8 06:11:40 mbb−1 kernel: mueb: topology change detected, propagating
Jun 8 06:11:41 mbb−1 kernel: mueb: received tcn bpdu on port 1(eth0)
Jun 8 06:11:41 mbb−1 kernel: mueb: topology change detected, propagating

One of the other bridges tells us that the topology of the LAN has changed (see Example 21). Well, okay. We
will set lower timeouts on our MACC table for a short period of time, and we will propagate this topology
change throughout the network.

7.4.2. Kill The Root Bridge Test

The ultimate test is of course a total blocking, breakdown or something similar to the root bridge. I did this by
shooting down the root bridge by init 1. Next I brought it up again with init 2. Last I pulled all plugs out of
the root bridge and waited for some time before I placed them again. In Example 23 you will see the
messages from the master−bridge mbb−1, and in Example 24 you see what happened the same time at the
backup−bridge mbb−2.

Linux BRIDGE−STP−HOWTO

7.4.2. Kill The Root Bridge Test 25

mailto:uwe@bnhof

Example 23. Test Messages Of Master Bridge mbb−1

Jun 12 13:35:15 mbb−1 init: Switching to runlevel: 1
Jun 12 13:35:20 mbb−1 kernel: mueb: port 4(eth3) entering disabled state
Jun 12 13:35:20 mbb−1 kernel: mueb: port 3(eth2) entering disabled state
Jun 12 13:35:20 mbb−1 kernel: mueb: port 2(eth1) entering disabled state
Jun 12 13:35:20 mbb−1 kernel: mueb: port 1(eth0) entering disabled state
Jun 12 13:35:20 mbb−1 kernel: mueb: port 2(eth1) entering disabled state
Jun 12 13:35:20 mbb−1 kernel: device eth1 left promiscuous mode
Jun 12 13:35:20 mbb−1 kernel: mueb: port 1(eth0) entering disabled state
Jun 12 13:35:20 mbb−1 kernel: device eth0 left promiscuous mode
Jun 12 13:35:20 mbb−1 kernel: mueb: port 4(eth3) entering disabled state
Jun 12 13:35:20 mbb−1 kernel: device eth3 left promiscuous mode
Jun 12 13:35:20 mbb−1 kernel: mueb: port 3(eth2) entering disabled state
Jun 12 13:35:20 mbb−1 kernel: device eth2 left promiscuous mode
Jun 12 13:35:50 mbb−1 init: Switching to runlevel: 2
Jun 12 13:35:50 mbb−1 kernel: NET4: Ethernet Bridge 008 for NET4.0
Jun 12 13:35:51 mbb−1 kernel: device eth0 entered promiscuous mode
Jun 12 13:35:51 mbb−1 kernel: device eth1 entered promiscuous mode
Jun 12 13:35:51 mbb−1 kernel: device eth2 entered promiscuous mode
Jun 12 13:35:51 mbb−1 kernel: device eth3 entered promiscuous mode
Jun 12 13:35:51 mbb−1 kernel: mueb: port 4(eth3) entering listening state
Jun 12 13:35:51 mbb−1 kernel: mueb: port 3(eth2) entering listening state
Jun 12 13:35:51 mbb−1 kernel: mueb: port 2(eth1) entering listening state
Jun 12 13:35:51 mbb−1 kernel: mueb: port 1(eth0) entering listening state
Jun 12 13:35:51 mbb−1 kernel: mueb: received tcn bpdu on port 2(eth1)
Jun 12 13:35:51 mbb−1 kernel: mueb: topology change detected, propagating
Jun 12 13:35:52 mbb−1 kernel: mueb: received tcn bpdu on port 1(eth0)
Jun 12 13:35:52 mbb−1 kernel: mueb: topology change detected, propagating
Jun 12 13:35:55 mbb−1 kernel: mueb: port 4(eth3) entering learning state
Jun 12 13:35:55 mbb−1 kernel: mueb: port 3(eth2) entering learning state
Jun 12 13:35:55 mbb−1 kernel: mueb: port 2(eth1) entering learning state
Jun 12 13:35:55 mbb−1 kernel: mueb: port 1(eth0) entering learning state
Jun 12 13:35:59 mbb−1 kernel: mueb: port 4(eth3) entering forwarding state
Jun 12 13:35:59 mbb−1 kernel: mueb: topology change detected, propagating
Jun 12 13:35:59 mbb−1 kernel: mueb: port 3(eth2) entering forwarding state
Jun 12 13:35:59 mbb−1 kernel: mueb: topology change detected, propagating
Jun 12 13:35:59 mbb−1 kernel: mueb: port 2(eth1) entering forwarding state
Jun 12 13:35:59 mbb−1 kernel: mueb: topology change detected, propagating
Jun 12 13:35:59 mbb−1 kernel: mueb: port 1(eth0) entering forwarding state
Jun 12 13:35:59 mbb−1 kernel: mueb: topology change detected, propagating
Jun 12 13:39:03 mbb−1 kernel: mueb: received tcn bpdu on port 1(eth0)
Jun 12 13:39:03 mbb−1 kernel: mueb: topology change detected, propagating
Jun 12 13:39:05 mbb−1 kernel: mueb: received tcn bpdu on port 1(eth0)
Jun 12 13:39:05 mbb−1 kernel: mueb: topology change detected, propagating

Example 24. Test Messages Of Backup Bridge mbb−2

Jun 12 13:35:21 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 4(eth3)
Jun 12 13:35:21 mbb−2 kernel: mueb: port 4(eth3) entering listening state
Jun 12 13:35:21 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 3(eth2)
Jun 12 13:35:21 mbb−2 kernel: mueb: port 3(eth2) entering listening state
Jun 12 13:35:21 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 2(eth1)
Jun 12 13:35:21 mbb−2 kernel: mueb: port 2(eth1) entering listening state
Jun 12 13:35:21 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 1(eth0)
Jun 12 13:35:21 mbb−2 kernel: mueb: topology change detected, propagating
Jun 12 13:35:25 mbb−2 kernel: mueb: port 4(eth3) entering learning state

Linux BRIDGE−STP−HOWTO

7.4.2. Kill The Root Bridge Test 26

Jun 12 13:35:25 mbb−2 kernel: mueb: port 3(eth2) entering learning state
Jun 12 13:35:25 mbb−2 kernel: mueb: port 2(eth1) entering learning state
Jun 12 13:35:29 mbb−2 kernel: mueb: port 4(eth3) entering forwarding state
Jun 12 13:35:29 mbb−2 kernel: mueb: topology change detected, propagating
Jun 12 13:35:29 mbb−2 kernel: mueb: port 3(eth2) entering forwarding state
Jun 12 13:35:29 mbb−2 kernel: mueb: topology change detected, propagating
Jun 12 13:35:29 mbb−2 kernel: mueb: port 2(eth1) entering forwarding state
Jun 12 13:35:29 mbb−2 kernel: mueb: topology change detected, propagating
Jun 12 13:35:49 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 12 13:35:49 mbb−2 kernel: mueb: port 3(eth2) entering blocking state
Jun 12 13:35:49 mbb−2 kernel: mueb: topology change detected, \
 <6>mueb: port 4(eth3) entering blocking state
Jun 12 13:35:49 mbb−2 kernel: mueb: topology change detected, \
 <6>mueb: port 2(eth1) entering blocking state
Jun 12 13:35:50 mbb−2 kernel: mueb: retransmitting tcn bpdu
Jun 12 13:38:26 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 2(eth1)
Jun 12 13:38:26 mbb−2 kernel: mueb: port 2(eth1) entering listening state
Jun 12 13:38:27 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 3(eth2)
Jun 12 13:38:27 mbb−2 kernel: mueb: port 3(eth2) entering listening state
Jun 12 13:38:28 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 4(eth3)
Jun 12 13:38:28 mbb−2 kernel: mueb: port 4(eth3) entering listening state
Jun 12 13:38:30 mbb−2 kernel: mueb: port 2(eth1) entering learning state
Jun 12 13:38:30 mbb−2 kernel: mueb: neighbour 0000.08:00:06:28:15:f6 lost on port 1(eth0)
Jun 12 13:38:30 mbb−2 kernel: mueb: topology change detected, propagating
Jun 12 13:38:31 mbb−2 kernel: mueb: port 3(eth2) entering learning state
Jun 12 13:38:32 mbb−2 kernel: mueb: port 4(eth3) entering learning state
Jun 12 13:38:34 mbb−2 kernel: mueb: port 2(eth1) entering forwarding state
Jun 12 13:38:34 mbb−2 kernel: mueb: topology change detected, propagating
Jun 12 13:38:35 mbb−2 kernel: mueb: port 3(eth2) entering forwarding state
Jun 12 13:38:35 mbb−2 kernel: mueb: topology change detected, propagating
Jun 12 13:38:36 mbb−2 kernel: mueb: port 4(eth3) entering forwarding state
Jun 12 13:38:36 mbb−2 kernel: mueb: topology change detected, propagating
Jun 12 13:39:01 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 12 13:39:01 mbb−2 kernel: mueb: port 3(eth2) entering blocking state
Jun 12 13:39:01 mbb−2 kernel: mueb: topology change detected, \
 <6>mueb: port 4(eth3) entering blocking state
Jun 12 13:39:02 mbb−2 kernel: mueb: topology change detected, sending tcn bpdu
Jun 12 13:39:02 mbb−2 kernel: mueb: port 2(eth1) entering blocking state

Linux BRIDGE−STP−HOWTO

7.4.2. Kill The Root Bridge Test 27

Appendix A. Network Interface Cards
In this section you will find a (for now) very incomplete list of NIC's which are known to work or known to
cause problem. For I neither have the money to buy a lot of different NIC's, nor I have any connections to
hardware vendors, I depend on your feedback to keep the list accurate. So feel free to mail about success or
failure to Uwe Böhme.

Valuing Of NIC Information

− − −

Cards I tried and are also reported not to work by other people

− −

Cards I tried or are reported not to work by other people

−

Cards reported not to work by other people

+

Cards reported to work by other people

+ +

Cards I tried or are reported to work by other people

+ + +

Cards I tried and are also reported to work by other people

NIC Information

3c509b Etherlink III

+ +

3c905b/3c905c

+ + + Never heard about any problem

HP J2585A

− − System hang−up after ifconfig

HP J2585B

+ +

Appendix A. Network Interface Cards 28

mailto:uwe@bnhof.de
mailto:uwe@bnhof.de

Linux BRIDGE−STP−HOWTO

Appendix A. Network Interface Cards 29

Appendix B. Recommended Reading
Here you will some recommendations which documents you should read before you start to setup a bridge.

The bridge home−page

Will give you recent information about the bridging code and the bridge utilities.

NET3−4−HOWTO

Describes how to install and configure the Linux networking software and associated tools.

Ethernet−HOWTO

Information about which Ethernet devices can be used for Linux, and how to set them up (focused on
the hardware and low level driver aspect of the Ethernet cards).

Appendix B. Recommended Reading 30

http://openrock.net/bridge/
http://www.linuxdoc.org/HOWTO/NET3-4-HOWTO.html
http://www.linuxdoc.org/HOWTO/Ethernet-HOWTO.html

Appendix C. FAQ
Here you will find some of the frequently asked questions connected to bridging.

FAQ

1. Hardware
What hardware do I need to run a bridge with 2−n NICs.
Can you please recommend some tools to measure a 2−port linux bridge throughput.

2. Software
I'm running with kernel x.x.x. Is a patch out there, to give me chance to use this stuff?

1. Hardware

 What hardware do I need to run a bridge with 2−n NICs.

I think a fat 486 or a modest Pentium should be able to keep up with 2x100Mbit pretty well, but I have never
tested this. I don't think RAM will matter much (8 or 16MB and all should be fine). CPU will not matter a
whole lot either (486/Pentium and all should be fine). I think the primary contributor is the type of bus (ISA,
PCI) and the type of network cards (some network cards require less "work" than others). Big switches
usually have immensely fat internal buses (3 or 4 gigabits is not uncommon). Standard PCI, for example,
can't keep up with a gigabit ethernet cards.

 Can you please recommend some tools to measure a 2−port linux bridge throughput.

Well, first question is: does it have 100mbit interfaces? If it hasn't (10mbit only), it shouldn't have problems
with keeping up, almost regardless of the processor speed. If it does have 100mbit interfaces and you're not
sure it will keep up, you can run a flood ping with big packets across it (ping −f −s 1450 ipaddress) and
see whether it keeps up.

2. Software

 I'm running with kernel x.x.x. Is a patch out there, to give me chance to use this stuff?

There are patches for and 2.2.14, 2.2.15. Since 2.3.47 it's in the mainstream kernel, so you don't need to
patch. If you're talking about others, you will have to upgrade, if you need to bridge.

Appendix C. FAQ 31

	Table of Contents
	Linux BRIDGE-STP-HOWTO
	Uwe Böhme
	Lennert Buytenhenk

	1. License
	2. What Is A Bridge?
	3. Rules On Bridging
	4. Preparing The Bridge
	4.1. Get The Files
	4.2. Apply The Patches
	4.3. Configure The Kernel
	4.4. Compile The Kernel
	4.5. Compile The Bridge Utilities

	5. Set Up The Bridge
	5.1. brctl Command Synopsis
	5.2. Basic Setup

	6. Advanced Bridge Features
	6.1. Spanning Tree Protocol
	STP Thread from bridge@openrock.net

	6.2. Bridge And The IP-Chains

	7. A Practical Setup Example
	7.1. Hardware-setup
	7.2. Software-setup
	7.3. See It Work
	7.4. Bridge Tests
	7.4.1. Tear The Patch Wire Test
	7.4.2. Kill The Root Bridge Test

	Appendix A. Network Interface Cards
	Appendix B. Recommended Reading
	Appendix C. FAQ
	FAQ
	1. Hardware
	2. Software

